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ABSTRACT

The nonlinear instability of the boundary layer on a heated flat plate placed in an on-

coming flow is investigated. Such flows are unstable to stationary vortex instabilities and

inviscid traveling wave disturbances governed by the Taylor-Goldstein equation. For small

temperature differences the Taylor-Goldstein equation reduces to Rayleigh's equation. When

the temperature difference between the wall and free stream is small the preferred mode of

instability is a streamwise vortex. It is shown in this case that the vortex, assumed to be of

small wavelength, restructures the underlying mean flow to produce a profile which can be

massively unstable to inviscid traveling waves. The mean state is shown to be destabilized

or stabilized to inviscid waves depending on whether the Prandtl number is less or greater

than unity.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. Introduction

Our concern is with the nonlinear instability of forced convection boundary layers over

horizontal heated flat plates and the subsequent secondary instabilities of these flows. In

a previous paper, Hall and Morris (1992), hereafter referred to as HM, considered the lin-

ear aspects of longitudinal vortex instabilities. In general it was shown that this convec-

tive instability develops in a nonparallel manner and cannot be adequately described by a

quasi-parallel stability theory of the type discussed by for example Wu and Cheng (1976),

Moutsoglou, Chen and Cheng (1984), Chen and Cheng (1981). At higher values of the con-

trolling stability parameter, the Grashof number, nonparMlel effects can be taken care of in

a self-consistent asymptotic manner provided that the vortex wavelength is not too large.

In the present paper we will be concerned with extending the work of HM into the strongly

nonlinear regime, in addition we will be concerned with the subsequent three-dimensional

unsteady breakdown of the flow induced by large amplitude vortex structures.

In addition to longitudinal vortex structures both Tolhnien-Schlichting and inviscid waves

are possible causes of instability in a heated boundary layer. If buoyancy forces are not too

large, then the inviscid modes are found to satisfy Rayleigh's equation, otherwise they satisfy

the Taylor-Goldstein equation. We show that, when buoyancy forces are sufficiently large

enough to alter the zeroth order inviscid instability problem, they also enter the equations

for the basic state and cause the mean velocity and temperature fields to be coupled.

In order to make progress with an analytical solution of the strongly nonlinear instability

problem associated with longitudinal vortex instabilities, we use the asymptotic structure

given by Hall and Lakin (1988) in the context of small wavelength GSrtler vortices. In this

limit, which corresponds to the far downstream behavior of a fixed wavelength vortex, the

vortices are confined to a finite part of the boundary layer and indeed where they exist the

mean state adjusts to allow them to remain neutral. We show that in forced convectivion

boundary layers the vortices occupy a region adjacent to the wall and that the thickness of

this region increases linearly with Grashof number. The results we present are for similarity

solutions of the nonlinear vortex-mean flow interaction problem but previous experience with

the related GSrtler problem, Hall (1988), Hall and Lakin (1988) suggests that the structure

of the nonsimilar solutions is not significantly different.

A significant result which we find is that for Prandtl numbers less than unity favorable

pressure gradient flows can have inflectional streamwise mean velocity profiles induced by

vortices. This suggests that a major role of vortex instabilities might be to modify favorable

pressure gradient flows to make them unstable to the relatively much more dangerous inviscid

instabilities. We investigate the Rayleigh instability problem for such flows and show that

vortices induce a class of unstable Rayleigh waves over a large range of wavenumbers.



The procedureadopted in the rest of this paper is as follows: in §2 we formulate the

nondimensionalequationsgoverningvortex instabilities in heatedboundary layers. In §3

theseequations are solvedfor small vortex wavelengthsand in §4 a similarity solution is
obtained. Somelarge Grashofnumberpropertiesof the similarity solution are discussedin

§5 wherewe show the importance of the Prandtl number in determining the shapeof the
inducedmeanflow. In §6wediscussthe inviscid instability of the vortex statesdiscussedin
§3,4, 5 and finally in §7wedraw someconclusions.

2. Formulation

Considerthe viscousflow over a semi-infinite flat plate with a typical lengthscaleL in

the flow direction. Suppose that the fluid speed at infinity is Uou_(x*/L) where x" measures

distance along the wall. We define the parameters R and G by

R = UoLv -1, a = Lag(To - Too)flv-2R -a/2. (2.1a, b)

Here v is the kinematic viscosity, g the acceleration due to gravity and/3 is the coefficient of

expansion of the fluid. The temperatures To and T_o respectively denote a constant reference

temperature and the fluid temperature in the freestream. We concern ourselves with the limit

R _ ec with G held fixed and determine the strongly nonlinear vortex flows which occur in

this limit.

Suppose next that the wall temperature is given by

T = T_o + (T_o - To)7"(z*/L) (2.2)

and that we define dimensionless variables (x, y, z) by

(x,y,z) = (x*L-X,y*L-1RU2,z*L-1R1/2), (2.3)

where y*, z* denote distance in the normal and spanwise directions respectively. We define

a dimensionless velocity field (u, v, w) associated with (x, y, z) by writing

(u*,v*,w') = Uo(u,R-'/2v, R-1/2w). (2.4)

The pressure p* is then written in the form

p" =pug R +-.. , (2.5)

where _ is a typical fluid density. The fluid density is given by

p" = _[1 +/3(T" - Too)] (2.6)
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and weshall make the Boussinesqapproximation throughout this work so that changes in

p can be ignored unless they are multiplied by gravity. The temperature field is then made

dimensionless by writing

T* = Too + (To- Too)T. (2.7)

In the Boussinesq approximation the continuity equation, momentum equations and energy

equations are:

V._u = O,

(a. v)u__

G
---frO(x) -- Pi(X) R-1]2 -- Px 1_

(--_G + GT) - p_

-Pz

P_

R

+ V2u, (2.8a, b, c)

(u_.V)T = 1V2T,
G

where a is the Prandtl number, V = (0_, 0y, 0z) and V 2 = (0_ +0_ + R-IO_). The boundary

conditions appropriate to (2.8) are

= o, T = 7(z), y = o,
(2.9a, b)

u_u_, w_0, T--*0, y_oc.

Note here that if the instability is caused by for example nonuniform wall heating the con-

ditions at the wall should be modified as in HM. In the absence of any instabilities we write

u_ = (_,_,0), T = T and the basic state is determined in the limit R _ co by

g_+gy = 0, ]

p_ = T,

_T,, + vTy = T_---z, [
O"

J=_=0, T = T,y=O,

_u_, T ---* 0, y---*oc.

(2.10a - f)

Here we have set P0_ = -u_u,_ and introduced the buoyancy parameter S = G/R which we

take to be 0(1). The longitudinal vortex structure of HM first occurs for G = O(R °) but our



ultimate concernis with the interaction of vortex structures and Taylor-Goldstein inviscid

waves which exist for G/R ,',., 0(R°). Hence it is convenient at this stage to allow for a

'buoyancy' coupling between the x, y momentum equations, even though most of the results

given in this paper will be for the case S = 0. Note also that (2.10c) can be integrated and

the result substituted into (2.10b) to give

_ + _,_ = u_u_ + u-_ + S T_dy. (2.11)

This coupling has a significant effect on similarity solutions for the basic state. In particular

if we choose u_ = x _ then the wall temperature T must be proportional to x 5"/_-1/2 for a

similarity solution to exist.

In HM the linearized version of (2.8) was solved for the case n = 1; it was shown that

at 0(1) values of G the longitudinal vortex instability induced by heating develops in a

nonparallel manner. At higher values of G interest centres on the right-hand branch of the

neutral curve where vortices of wavenumber a are neutral for G _ a 4. In fact this high

wavenumber regime is important because a disturbance of fixed physical wavelength will

correspond to large values of the local Grashof and wavenumbers at sufficiently large values

of x. Thus the regime is particularly relevant to experiments where the vortex instability is

caused by very small background disturbances which must evolve over a significant distance

before they develop in a nonlinear manner. It is with the latter nonlinear problem which we

will concern ourselves in this paper.

3. The Strongly Nonlinear Evolution Equations for Small Wavelength

Streamwise Vortices

The nonlinear structure which we develop in this section is based on the related analysis

of Hall and Lakin (1988) for G5rtler vortex flows. The major difference between the problems

however is that in the convection problem small wavelength neutral vortices occur near to the

boundary whilst in the G5rtler problem the vortices move away from the wall to the position

in the flow where Rayleigh's criterion is most violated. This difference leads to significant

differences in the corresponding nonlinear structures. In fact the heated boundary layer

has some similarities with the strongly nonlinear Taylor vortex problem, Denier (1992).

However, the fact that the Taylor instability occurs in a bounded region causes even the

Taylor and convection problems to differ significantly at high values of the appropriate

control parameters.

In the convection problem, small wavelength vortices feel the local strength of the desta-

bilizing bouyancy force through OT the vertical gradient of the basic temperature field. In

general, this gradient is a maximum at the wall so the instability is initiated there. In fact
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it was shown in HM that in the neutral casethe dominant balance is betweenspanwise

diffusion and buoyancyeffectsin the y momentum equation and between spanwise diffusion

and the convective operator in the energy equation. It is this balance which leads us to the

appropriate generalization of Hall and Lakin (1988) to the present problem.

Suppose then that a vortex of wavelength a exists in a region of depth 0(1) adjacent

to y = 0. Since we have assumed that G/R is 0(1) then we must consider the case when

a = 0(R1/4). Thus we write
G = Ga 4 +...

(3.1a,b)
withG/R = S +...

In order to recover the situation when buoyancy is not important we must then consider the

second limit S -* 0. The neutral right hand branch modes for a >> 1 have temperature,

pressure and velocity perturbations 0,16, fi, 7), t? such that

t 0(a 2) -:_ _-. 0(1), -z_)"_ 0(a2), --_) _ 0(a). (3.2)
0 p u w

The first of the above scalings follows from our earlier remarks concerning the balances

G0 _ _3_, 0,z _" tT_ whilst the remaining balances follow from the choice of balances

pz ,._ w_z, U_z " vgy, vy _ w, in the z, x momentum equations and the continuity equation

respectively. We then fix the overall size of the disturbance so that the mean flow and

temperature field corrections driven by the disturbance are comparable with the unperturbed

flow. Thus we require that ft. V_ .'_ 0(1) ,-- _. V0; we therefore expand u,v,w,p and T

appearing in (2.8) in the form

u = Uo + a-2/3-ff,(x,Y) +"" + a-l[Uo(x,Y) E + e.G.] +...

V = "Vo "_ a-2/3_I(X,Y) _-"'" "_ a[go(x,y)E --_ C.C.]-_-'"

w = [W0(z,y)E+ C.C.]+... (3.3a, b, c, d, e)

p = [a2Po(x,y)E+ C.C.] +...

T = To(x,y) + a-2/aT,(x,y) +"" + a-a[OoE + C.C.] +...

In the above expressions the function 2E = e i'_z, C.C. denotes complex conjugate and ...

denotes terms smaller (in terms of a) than those immediately before this symbol. Notice

also that the mean (in terms of z) part of the pressure must be expanded as

= -qo(X,y ) + a-2/3ql(x,y ) +... (3.3f)

Furthermore, we have anticipated that the correction terms in (3.3) to the mean and funda-

mental are 0(a -2/3) smaller than the dominant terms. This choice can be inferred from the
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fact that the correction termsto the meanmust be comparableto the depth of the transition

layer in which the vorticesdecayto zero. Sincethe depth of this layer is governedby the

scalingsof the linear neutral problemit must beof depth0(a-2/3), seeHall and Lakin (1988).

Equations for the vortex

If we substitute (3.3) into (2.8) and retain the leading order fundamental terms we obtain:

Vo_, + i Wo = O,

Uo + Vo_o, = O,

GOo - Vo = O,

Wo + i Po = O,

(3.4a, b, c, d, e)

0 0 m

-- + VoTo_ = O.
O"

These equations determine only Uo, Vo, Wo, and Po in terms of 0o, and in fact the equations

are only consistent if
^__

aGToy + 1 = O.

We integrate this equation to give

-- Y (3.4f)To= 7(z) _, ,

where we have satisfied the required boundary condition on To at y = 0. The temperature

profile (3.4f) is that temperature distribution which enables a vortex of wavenumber a >> 1

to remain neutral. Without any loss of generality we will now assume that the fundamental

temperature disturbance 0o is real.

Equations for the mean:

If we substitute the expansions (3.3) into (2.8) and equate the leading order mean terms

in the continuity, x, y momentum equations and the energy equations and use (3.3) we obtain

go. + Vo_

'blO'lZOx .4- Vo?AOy

qo_

_oTo_ + _oTo_

= O,

1

-- + + +

= To

: +

(3.5a, b, c, d)



The y-momentum equation above can be integrated directly to give

_o - Tody ÷ _0(x, 0). (3.5e)

The function T0 appearing in (3.5c) can then be replaced by 1 - b-v-d,and then (3.ha,b,d) can

be integrated to find V02, u0, v0. It is instructive at this stage to seek a similarity solution of

(3.5) in order to gain some insight into the nonlinear structure we have obtained.

We recall that for the Falkner-Skan profile with u_ _.- x" buoyancy forces can only be

retained within the similarity solution structure if T _ x-_ A-. However (3.4c) implies that a

similarity solution in the presence of vortices is possible only if T -,, x (1-')/_. Thus a similarity

solution in the presence of both buoyancy effects and vortices is possible only if n = 1/3. In

fact the case n = 1/3 is of particular interest in vortex-wave interaction theory, since, as will

be remarked upon later, the only possible similarity solution when small wavelength vortices

interact with Rayleigh or Taylor-Goldstein waves has n = 1/3. In the next section we will

discuss the n = 1/3 case in detail, before doing so we will complete the description of the

fiowfield for the more general non self-similar case. However we stress that the results which

we obtain for this particular choice of n are typical of the other similarity solutions.

The equations (3.ha,b,d) must in general be integrated numerically with q0 given by

(3.5c) and T--0given by (3.4f). However, we can think of (3.5d) as a first order equation in y

for V02 and we formally write the solution in the form

The function Vo(x, 0) remains unknown at this stage and for small values of y the integrand

behaves like _o_(X, y)y_% so that if we assume there is no reversed flow then this quantity

is positive if T_ > 0. Thus for similarity solutions with n < 1, V02 is a positive decreasing

function near the wall and we expect that, since we do not anticipate the presence of vortices

everywhere, the vortex will vanish at some value of the similarity variable 7. In fact for

similarity solutions with values of n not satisfying this inequality the integrand becomes

positive for large enough 77, thus the only major change is that the maximum of V0 occurs

away from the wall. We also expect that (3.6) will determine V02 in a finite range of valuesfor

y in the non self-similar case.

The solution (3.6) is therefore valid for 0 < y < y and more precisely near y, Vo _ [y -y]

and viscous effects come back into play. In fact a layer of depth a -2/3 is required at g in

order to allow V0 to adjust from algebraic decay for y- y >> a -2/3 to exponential decay for

y - y >> a -2/_. The required structure in this layer is virtually identical to that given by

Hall and Lakin (1988) and so will not be repeated here. It suffices to say that V0 satisfies

the second Painleve equation in this layer and that across the layer u0, u0y, v0, To, Toy and qo



arecontinuous. Thus abovethe transition layer we retain the expansions(3.3) but with all
the z dependent terms set equal to zero so that the leading order problem for uo, Vo, etc. in

this upper layer is identical to that for the unperturbed flow. We can therefore write down

the following 'composite' problem for the whole flow field.

go_ + _o_

?.ZO%tOxJV VO_Oy

_oTo. + FoToy

where H is the Heaviside function

H(s)=/ 1,
[ O, s_<O.

The appropriate boundary conditions are

= 0,

fo= -S'qo,(X, O) - S Toxdy + u_u_ + gory

+ 1H(V02) {go_ V02}_,

1

= aT--o_ + 2H(V02){T0yV02}_,

= 0,

(3.7)

vo= = = o, %= 7, y=o
n

go --* u,, To --* O, y _ oo

and qox( z, O) = - f_ To,dy.
/ (3.8)

We note that at the point ff where Vo2 = 0 the functions Uo, Uoy, g0, To, T0_ are to be made

continuous and, since (g0,T0) _ (ue,0) as y _ oo, then V0(x,0), g0u(x,0), must adjust

themselves in order that this limit is achieved. Note also that the position _ where V0

vanishes will also be a function of x. In fact for numerical reasons it is more convenient to

treat go,(Z, 0) as a third unknown to be iterated upon on until Y0(x,0) + f_Tody = 0. The

numerical free boundary value problem specified by (3.7,3.8) can be solved in principle by

adapting the procedure described in Hall and Lakin (1988), however it was found in that

paper that the form of the non-self-similar solution can be inferred from the self-similar ones

by varying the parameter corresponding to G.

It remains for us to discuss the nature of the flow described above in the neighborhood

of the wall. We recall that the solution which we have obtained has g = _ = 0, To = 7" at
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the wall but Vo(x, 0) -¢ 0. Of course the total flow must satisfy the no-slip conditions at the

wall so an inner boundary layer must be present as the wall is approached. We can see from

(3.3a) that in the limit y ---* 0 the solution calculated above is such that

u ~ y 0 (x, 0) +... + a-l[u0(x, 0)E +...]...

which suggests that a new structure will emerge when y falls to 0(a-l). Thus we define a

new variable _ by

( = ay

and seek a solution for _ = 0(1). An examination of the higher harmonics in (3.3), which

are smaller than the fundamental for y = 0(1), shows that for _ - 0(1) all modes are

comparable. This is because the cascade of energy from the fundamental down to the

harmonics is enhanced to such an extent by the vertical diffusion of vorticity, now comparable

with spanwise diffusion, that the energy in the different modes is of a similar size.

Thus in the neighborhood of the wall we must replace (3.3) by

u =

v = a_(x,(,z) + O(a'/3),

w = aCv(x,_,z) q- 0(a-2/3), (3.9a, b, c, d, e)

p -" a2_ q- 0(a4]3),

T

whilst p now expands as

7- + a-ll'(z,¢,z) + 0(a-5/3),

The zeroth order approximation to (2.8) in the wall layer then becomes,

_);+tbz = 0,

f, fL_+tbG = _¢¢+G_,

= -G + tb;; + _G=,

-'- - _-t- _ .
O"

(3.10a, b, c, d, e, f)

_ = 0



which must be solvedsubject to

fi=_=tb=0,

a -_ %(z, 0)¢ + [Uo(x,0)E + c.c.], C--, _,

f---, O, ¢ -_ _,

--, [v0(x,0)E + C.C.], _ --, _,

_ -, 0,_" -_ _,

q _ _o(X,0),¢ + o_.

and it is easy to show that a solution of the above system can be found by integrating from

= oc to _ = 0 using an appropriate asymptotic form for ¢" >> 1. Thus the wall boundary

layer is passive even though it is fully nonlinear. Hence we can obtain the core solution for

y = 0(1) without reference to the wall layer problem so we do not discuss further the latter

problem. We shall now discuss self-similar solutions of the strongly nonlinear interaction

problem (3.7)-(3.8).

4. A Self-Similar Solution

We shall now concentrate on the special case

U e _ xl/3 _[- ___ xl/3,

and introduce the similarity variable r] defined by

We then write

To = xx/a f'(r]), To --
1

3x,/z {rift- 2f}, To = x_/3g(TI), Vo= 9(,), qo= x_/_q(,).

The free boundary problem (3.7) - (3.8) can then be written in the simplified ordinary
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differential equationform:

i . if2f'"+ 5{2f f- + 1)

lg, 1
a - 5{f'g- 2fg')

1+
Ga

ql

f=f'

= _Sq(rl)-S-f-_q ' H(_V2){f'@2} ',

= -2H(V2){g@2} '

= 0, 1
= g

= 0, r/=0, ff=l,q=g=O, rl=oo.

(4.1a, b, c, d, e)

In addition we require that f,f',q,g and g' are continuous at r/ = g where l) = 0.

problem can be solved numerically

(4.1a,b,d) to find 1_, f, and q with

terms proportional to _2 in (4.1a,b)

(4.1d) to determine f,g and q for r/

values of f, f', f", g, g' and q found

conditions f'(_)= 1, g(oo)= 0,

The

by making guesses for _/(O),q(O),f"(O) and integrating

g = 1- aJtg. At the point where 1¢'= 0 we then set the

equal to zero and integrate these equations together with

> g. This integration is carried out using the computed

as r] _ g. For arbitrary choices of V(0),f"(0),q(0) the

q(oo) = 0 will not be satisfied but we can perform a

Newton iteration procedure on the wall values of l), f", g' until the conditions at infinity are

satisfied.

Numerical solutions of (4.1) were in the first instance obtained for a range of values of

for S = 0, a = .2, 1,5. In Figure 1 we show the computed values of _, 1)2(0) and f"(0). We

see that solutions can be obtained for G greater than some finite value, in fact this critical

value corresponds to the right hand branch of the neutral curve. At the larger values of

used in the calculations the results suggest that g _ G, I_/2(0) --. d 2, f"(O) .'., d -1. We shall

comment further on this asymptotic limit in the next section.

In Figures 2, 3, 4 we show the functions if, f", g and 122 in terms of r/for different values

of G with cr respectively equal to l, 5, .2. It can be seen in each case that the boundary layer

thickens as the Grashof number increases. In Figures 2b, 4b we note the discontinuity in f'"

which occurs at the transition layer position rl = _. The discontinuity also occurs for the case

a = 5 shown in Figure 3b but at the values of G used in the calculations the discontinuity

is not apparent. In each of the calculations the function iy2 decreases monotonically from

its value at the wall to zero at 7] = g. The temperature profiles shown in Figures 2c, 3c, 4c

illustrate the large G structure mentioned above. Thus as 0 increases the interval over which

g is linear in rl itself increases linearly with 0. On the other hand as G is decreased towards

its linear critical value the temperature profile approaches it's unperturbed form. It is also

clear from the calculated velocity and temperature fields that an important consequence of

11



the mean flow being driven by the vortices is that the boundary layer thickness is increased

from it's unperturbed value. More precisely we note that in the presence of vortices the

boundary layer thickness is increased by a factor G from it's unperturbed value.

A significant difference between the calculations for the different values of a can be seen

in Figures 2b, 3b, 4b. We refer to the fact that at the smallest value of or, namely a = .2, the

function f" has a minimum in the region where the vortices exist and a discontinuity in the

sign of its derivative across the transition layer. This result is significant because it means

that the mean velocity profiles associated with f_ have inflection points at the minima of

f_ and sign changes in the second derivative of the mean downstream velocity component

at the transition layers. We stress that no such points were found for the cases a = 1,5,

this suggests that inflection points can only be created by the vortices below some critical

value of the Prandtl number. This means that in low Prandtl numbers flows, wall heating

not sufficiently large to induce Taylor-Goldstein modes because S = 0, might still lead to

highly unstable inviscid Rayleigh waves. The secondary instability of the flows induced by

the vortices will be discussed in the final section of this paper.

In Figure 5 we show f'" as a function of r/ for the case _ = .2. We note that the size of

the jump in f'" across the transition layer increases with G. In addition when G increases we

see that the region between the wall and the inflection point increases but that f"' remains

relatively small until the transition layer is reached. In order to understand this behavior

it is instructive to consider the limit G _ cc in (4.1) and see how the underlying flow

structure evolves. This limit will be discussed in the next section, before doing so we report

on some calculations we have carried out for the case when buoyancy effects are present. In

Figures 6a,b,c we show the quantities _1, f"(0) and 1_2(0) for the case a = 1, and S = 0, 1,2.

The velocity and temperature profiles associated with the S = 2 calculations are shown in

Figures 6d,e,f,g, we note here that the most significant difference between the S = 0 and

S = 2 results is that buoyancy effects cause f' to overshoot it's free-stream value for a range

of values of 7/.

5. The Limiting (_ ---. oc Flow Structure

We stress here that, although our asymptotic analysis is carried out on the similarity

problem discussed in Section 4, the approach can be applied in a similar way to the nonsimilar

problem in the limit x ---* cx_ with G fixed, see §7 for a brief discussion of this situation.

In order to develop a large G solution of (4.1) it is first convenient to write (4.1a,c) in

12



the form

ill

-1 _ ,)f, +2f}
3a

f,2 _{(G_o " q)f'+2f}5{( - 1-2ff")} + -

(5.1a, b)

which are valid if _2 > 0.

The numerical results discussed in the previous section suggested that for G >> 1 the

vortices are distributed over a region of depth 0(G). Hence we seek a solution of (5.1) with

7/= 0(G). Actually, since G is always multiplied by a when it appears, it is more convenient

to treat GG as a large parameter and define

7/ (5.2a)
Ga

It then follows that the right and left hand sides of (5.1b) will balance if f ,,- Ga, 9 ,_ Ga,

we therefore write

(5.2b, c)

and the zeroth order problem obtained from substituting the above expansions into (5.1) is

_,,, : (2){a(_,2_l - 2ff/q)")+ _"([1- _']_'+ 2q)} 9 .2 ,

1- 3a {[1 - ¢]_i+ 2_}.

(5.3a, b)

If we assume that there is no sublayer structure near ¢ = 0 then (5.3) must be solved subject

to

= *' -- O, 9 2 - V2(0), _ = 0 (5.4)

and 9(0) is a constant to be determined. It can be shown that for q > Ga, where no vortices

exist, a large (Ga) solution of (4.1) can only be developed if f' + 1, 9 --* 0,7/ + (Ga)+ so

in addition to (5.4) we require

• '=1, 9=o, ¢=1. (5.5)

The nonlinear differential system specified by (5.3), (5.4), (5.5) can in general only be solved

numerically and the solution will fix 9(0) and _"(0). However the expansions (5.2b,c) are

not uniformly valid as _ --* 1_ because in that limit 9 ,-_ (1 - _) so the constant term in

13



the denominator of (5.1b) will be comparablewith _2 when 1- ¢ ,,_ 0(G(7) -2. In order to

find the appropriate expansions in that layer we observe that in the neighborhood of _b = 1

we can write

=

2

_ 2 [1 + _][_b- 1] +...
2 3(7

where _ is a constant determined by the solution in 0 < ¢ < 1 and _ is given by

(5.6a, b)

= c(1- (5.7)

where c is a constant. It follows that in the neighborhood of ¢ = 1 the expansion (5.2b)

must be modified to give

f=G(7 l+g (_)_ + (_._. +... (5.s)

where ¢ = (G(7)2(i- _b). The function ¢ is then found to be given by

3_=c ¢+ 2(7(1 +_)

l+a

(5.9)

The expansion (5.8) is valid until ¢ = 0 where the vortex vanishes. The solution found above

is then matched onto the solution of

f'" + _{2ff"- f'_ + 1} = 0

satisfying f'(c_) = 1. However, this outer layer is passive and so we do not pursue the

solution further here.

It follows from the large (_(7 solution found above that if a < 1 in this limit _" ,-, f" is

a maximum in the layer near 7/= Ga. In fact from above it can be shown that for ¢ = 0(1)

3 )_-2f"'= -c(1 + (7)(7((7- i) ¢ + 2(7(1 + _) (_(7)20-_).

Thus f'" becomes large if (7 < 1, this is consistent with our numerical work. Numerical

solutions of (5.3) suggest that the constant c is always positive so that f"J is positive or

negative near 7/= G(7 depending on whether or not a is less or greater than 1. Moreover, in

the case a < 1, f'" attains its largest value near 7] = Ga and this value ,,_ (d(7) 2(l-a). Since

we can show that the solution for r/> G0 must have f"_ < 0 we see that the results shown

in Figure 4 which showed a jump in the sign of fm at g are confirmed and indeed a similar

14



result would be found for any valueof a < 1. Furthermore since a small 7? solution of (4.1)

shows that f"' is positive near r/ = 0, the continuity of f'" in (0, 7) implies the existence of

an inflection point in the velocity profile for any Prandtl number less than unity.

Some numerical solutions of (5.3) are shown in Figures 7, 8, 9. Figure 7 shows 02"(0)

and I5"(0) as a function of (7. The computed velocity field in the large Go limit similarly

agrees well with the full solutions. Of particular interest is the dependence of the function

qJ'" on ¢ and _r. In Figures 8a,b we show plots of 0' and 0'" as functions of ¢ and or. The

results shown confirm that inflectional velocity profiles exist only for cr < 1. At finite values

of Gc_ our calculations suggest again that inflectional profiles exist only for a < 1 though an

exhaustive check of this possibility in the cr - G plane was not carried out. In the case o ¢ 1

the results of Figure 7 suggest that for any a > 1, _'_ is always negative whilst for a < 1 k_"

is positive in an interval (_*, 1) for some _p* < 1. In order to demonstrate the behavior of

• _" near a = 1 we have in Figure 9 plotted results for the cases o = .98, .99, 1, 1.01, 1.02. We

see that _9"_ tends to a negative constant as _ _ 1 for a = 1, whilst for a slightly less than

1 _" becomes large and positive in a small interval near _p = 1. For cr slightly greater than

1 the function _'" is always negative but increases significantly in magnitude near 9 = 1.

We note that the finite value of q_'_ for a = 1 occurs because the next correction term in

(5.6a) when a = 1 is proportional to g,3. The implications of the above results for secondary

instability theory will be discussed in §6.

6. Rayleigh or Taylor-Goldstein Inviscid Breakdown Induced by Streamwise

Vortices

Now let us consider the inviscid instability of the finite amplitude vortex structures

described in the previous section. The approach we take is based on the work of Hall and

Horseman (1991) on the instability of G5rtler vortices. The most important property of

an inviscid instability in a boundary layer flow is that it operates on the same streamwise

lengthscale as the boundary layer thickness. In terms of (2.8) this means that for the inviscid

wave disturbance o ,,, R1/_. In addition inviscid waves are time-dependent so that terms

u__t,Tt must be added to (2.8b,c). Thus we now write

/iV

W yz,/ / z,+/xe'R   If

T(x,y,z)

+...

Here the first term corresponds to the combined mean flow-vortex state driven by buoyancy

effects whilst the second term represents an inviscid travelling wave disturbance of arbitrarily

15



small amplitude A. We again denote the buoyancy parameter S = G/R and then substi-

tute (6.1) into (2.8) and equate terms of order A.

approximation to this system is

iaV + Vy + Wz

ic_(_ - e)U + V_ + W_z

ia(_ - c) V

i,_(_- c)W

ia(_ - c)O + VT_ + WTz

In the limit R ---* co the zeroth order

= 0,

= -laP,

= -P_ + so,

--Pz)

-" O.

(6.2a, b, c, d, e)

Here we have replaced -_ by the wavespeed c and the appropriate boundary conditions are

V = 0, y = 0, oo. With the function _ specified by the steady nonlinear vortex problem

discussed earlier the system (6.2) and the boundary conditions constitute an eigenvalue

problem

_=_(c,S).

Note that if the basic state is dependent only on x, y then (6.2) can be reduced to

(_- c)(v_ - _2v) - %v - _ v, (6.3)
U--C

which is the so-called Taylor-Goldstein equation. If buoyancy forces are negligible, S = 0,

(6.3) reduces to Rayleigh's equation. However when _ is a function of z no simple general-

ization of (6.3) is available, but we can eliminate U, V, W and 0 from (6.2) to give

[_c] 2 + [_:c]2 [__c]---------z=S [__c]2[S-Tu_c_(__c)2 ] . (6.4)
y z y

If S = 0 the above equation reduces to the equation obtained by Hall and Horseman (1991)

in their discussion of inviscid instabilities induced by CSrtler vortices. The solution of (6.4)

is of course a nontrivial task bearing in mind the fact that _ must in general be determined

numerically. Here we shall concentrate on the case when S = 0 so that we are in effect

limiting our analysis to the determination of whether vortex instabilities induced by wall

heating can trigger a rapidly growing Rayleigh instability. Thus we shall now confine our

attention to the solution of the eigenvalue problem

P_ P_ a2P
([_Uc]2) +([_--c]2)z [_-c]2 -0

(6.5)

P_=0, y=0, P---* 0, y ---, cx_.
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with g(x, y, z) determined by the nonlinear vortex equations in the presence of wall heating

but with S = 0. In particular we will investigate the case when K corresponds to the small

wavelength solution discussed in §3,4. We recall that in that limit vortices are confined to a

region of depth 0(1) adjacent to the wall with boundary layers of thickness a -1, a -2/a at the

wall and at the edge of the region of vortex activity respectively. Above the a -2/a transition

layer the flow is determined by the unperturbed boundary layer equations and the mean

parts of u, u v with respect to z are continuous across the layer. It follows that a solution

of (6.5) can be sought with no z dependence where vortices are absent. In the lower part of

the boundary layer, where K expands as in (3.3a), we find that P takes the form

P = Po + a-lP1 + a-2P2 + a-3p3 cos az + a-aP4 + ... (6.6)

where P0, P1 etc. depend only on x, y. If we expand a, c in the form

c) = co)+ a-l(c l, cl) +... (6.7)

then we find that P0, P3 satisfy

and

) ° 2P°- co] col2 - 0,
(6.8)

P3 = -2(_0 - Co)2 (UoP0_[fi0 - Co]-3)y. (6.9)

Equation (6.8) is simply the Rayleigh equation for a unidirectional flow u0 so that the vortex

does not have a direct effect on the zeroth order Rayleigh problem. However it does have a

significant indirect effect because fi0 is determined by the vortices. In the region above the

a -2/3 transition layer (6.8) again gives the correct zeroth order approximation to the inviscid

stability problem. Across the layer uo, u0u are continuous whilst uouu is discontinuous.

In fact this discontinuity in Uoyu is smoothed out within the transition layer by viscous

effects. An examination of (6.5) in the transition layer shows that as long as Co _ Uo in

this layer then Po, P0y are continuous across the layer. Similarly the a -1 wall layer is passive

so that if we are not concerned with neutral waves propagating downstream with the mean

downstream fluid speed in the transition layer then it is sufficient for us to solve (6.8) with u0

determined by the vortices in 0 < y < _ and by the boundary layer equations for y > _. For

definiteness we consider the case when Uo has the similarity form discussed in §4. Thus we

write fi0 = xl/3ffO?) with f determined by (4.1), it is convenient to rescale c_0, Co by writing

Oz0 ---- (_oX-I/3, CO --_ _0 xl/3
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so that the eigenvalue problem &o = ao(_0, G) becomes

[f, Z _o]2 n If'- _°]2 - 0

P0_ = 0, 77= 0, P0 _ 0, _/ --* ec. (6.10)

In fact the similarity solution we have considered is particularly important in vortex-wave in-

teraction theory. In the latter theory, see Hall and Smith (1991), a small amplitude Rayleigh

or Tollmien-Schlichting wave system interacts with itself to drive a strong vortex field which

itself acts back on the wavefield. In the present context a Rayleigh-vortex interaction occurs

if A in (6.1) is choosen appropriately. In this case the wave system drives the vortex in the

critical layer and the fact that the wave system must remain neutral as it moves downstream

means that similarity solutions of the inviscid equation describing the wave are possible only

if n= 1-
3"

In the absence of wall heating the basic state has ff determined by the Falkner-Skan

problems for a pressure gradient proportional to z -1/3, and since the velocity profile is

non-inflectional no unstable inviscid eigenvalues exist. We saw in the previous section that

inflectional streamwise velocity profiles are generated by wall heating whenever the Prandtl

number _r is less than unity.

In Figures 10, 11, 12, 13 we show results we have obtained by solving (6.10) for the case

(7 = .2 and a range of values of G. In our calculations we have kept 50 real and computed

the corresponding complex value of _0. We see in Figure 10 that at each value of (_ there is

a band of unstable modes present to the right of a finite value of &0 • Each mode becomes

neutral and disappears when the wavespeed is equal to the fluid speed at the inflection point

of the velocity profile. Note here that all our calculations were for cases where such an

inflection point exists, at sufficiently small values of G the basic mean profile approaches

its unperturbed values and no inflection points exist. The unstable mode persists for all &0

greater than the neutral value but has (50_o)i tending to zero as 50 --* oo, in this limit c0_

approaches the fluid speed at the discontinuity in fl, at the transition layer. An analysis

of that limit shows that the present analysis breaks down when &0 = 0(loga). In this

wavenumber regime the Rayleigh wave has a two layer structure (of depth a -2/a, (log a) -1 )

at the transition layer and is effectively zero elsewhere. We do not give details of the behavior

for 50 " ] log a] because the mode is neutral there and the most unstable growth rates occur

for &0 = 0(1). We see that the wavenumber of the most unstable mode increases as the

Grashof number increases, this is of course due to the thickening of the boundary layer.

Some eigenfunctions associated with the modes are shown in Figures 12, 13. We see the

concentration near _/of the eigenfunction of the second mode as its growth rate approaches

zero at large 50.
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7. Conclusion

We haveshownthat wall heatingproduceslargeamplitude streamwisevortex structures

which completelyalter the boundary layer in which they develop.We haveconcentratedour
attention on self-similar flows which enabledus to solvethe mean flow-vortex interaction

problemby reducingit to a setof nonlineardifferential equations.A significant result which
wefound wasthat the mean-statemodifiedat zerothorder canhaveinflection points whereas

the unperturbed state doesnot. For the specialcasewhen the driving pressuregradient is

proportional to x-1/3 wefound that inflectional profilesareonly generatedwhenthe Prandtl

number is lessthan unity.
The importance of the inflectional profiles is that they are highly unstable to Rayleigh

waves growing on a streamwise lengthscale 0(17,-1/2) shorter than that over which the near

state develops. This means that a boundary layer inviscidly stable in the absence of wall

heating can be made massively inviscidly unstable by streamwise vortex restructuring of

the boundary layer. It is of course relevant to question whether the significantly different

mean flow character corresponding to the cases a < 1, cr > 1 is a function of the particular

similarity flow considered. In order answer this question we note that the more general form

of the similarity solution given by (4.1) with S = 0 is

n--1

_1= yx-'-_,

_o = x'_f'(TI),_o-

 ()T0 1-o()Vo= y, =x 2 g_,

n+l_ , n-1 _,
!g,, + __y_jg + __y_i g
O"

2 [_f + -- '

= - _{f"?2}'H(_'2),

= _ 2{g'V2}H(I_ '2)

(7.1)

f = f' = 0,7/= 0,f' = 1,g = 0,7 = o_,

f, f', g, g'continuous at 7/= 7, where _'(_-) = 0.

In order to see whether inflectional profiles exist at large Ga we can repeat the analysis of §5

by seeking a solution for &. The expansion procedure follows exactly that as of §5 and the

key result is that the correction term _ in (5.6a) is independent of n and again proportional
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to (-¢ + 1) _+1. This means that f" becomes large as _b _ 1_ and changes sign when cr

passes through 1. This result can be used to infer that f'" is positive as ¢ _ 1- for a < 1

and coupled with the fact that f"t must be negative for r/> _ and for r/<< 1 we find that for

any n the large Ga limit leads to inflectional profiles for a < 1. This argument suggests that

the results obtained for the special case n = 1/3 are typical and that inflectional profiles are

produced whenever o" < 1 at sufficiently large values of G0. In fact the large Grashof number

analysis of §5 can be reformulated as a large x asymptotic solution of the full interactive

problem. This can be done for u, ,_ x n,T ,'_ x m for any positive m and it is found that

inflectional profiles are again only created for Prandtl numbers less than unity. This suggests

that all heated boundary layer flows of fluids with Prandtl number less than unity are caused

to become inviscidly unstable by a streamwise vortex restructuring of the flow.
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